Sphere-forming capacity as an enrichment strategy for epithelial-like stem cells from equine skin.
نویسندگان
چکیده
BACKGROUND Mammal skin plays a pivotal role in several life preserving processes and extensive damage may therefore be life threatening. Physiological skin regeneration is achieved through ongoing somatic stem cell differentiation within the epidermis and the hair follicle. However, in severe pathological cases, such as burn wounds, chronic wounds, and ulcers, the endogenous repair mechanisms might be insufficient. For this reason, exogenous purification and multiplication of epithelial-like stem/progenitor cells (EpSCs) might be useful in the treatment of these skin diseases. However, only few reports are available on the isolation, purification and characterization of EpSCs using suspension cultures. METHODS In the present study, skin was harvested from 6 mares and EpSCs were isolated and purified. In addition to their characterization based on phenotypic and functional properties, sphere formation was assessed upon isolation, i.e. at passage 0 (P0), and at early (P4) and late (P10) passages using different culture conditions. RESULTS On average 0.53 ± 0.28% of these primary skin-derived cells showed the capacity to form spheres and hence possessed stem cell properties. Moreover, significantly more spheres were observed in EpSC medium versus differentiation medium, corroborating the EpSCs' privileged ability to survive in suspension. Furthermore, the number of cells per sphere significantly increased over time as well as with subsequent passaging. Upon immunophenotyping, the presumed EpSCs were found to co-express cytokeratin (CK) 14, Casein kinase 2 beta and Major Histocompatibility Complex (MHC) I and expressed no pan CK and wide CK. Only a few cells expressed MHC II. Their differentiation towards keratinocytes (at P4 and P10) was confirmed based on co-expression of CK 14, Casein kinase 2 beta, pan CK and wide CK. In one of six isolates, a non-EpSC cell type was noticed in adherent culture. Although morphological features and immunohistochemistry (IHC) confirmed a keratinocyte phenotype, this culture could be purified by seeding the cells in suspension at ultralow clonal densities (1 and 10 cells/cm(2)), yet with a significantly lower sphere forming efficiency in comparison to pure EpSCs (P = 0.0012). CONCLUSION The present study demonstrated sphere formation as a valuable tool to purify EpSCs upon their isolation and assessed its effectiveness at different clonal seeding densities for eliminating a cellular contamination.
منابع مشابه
Spontaneous Mesenchymal to Epithelial Like Tissue Transition (MET) in a Long Term Human Skin Culture
In an attempt to isolate multipotent stem cells from foreskin in a long-term culture, we encountered an interesting phenomenon which was the conversion of the fibroblast dominant condition to epithelial-like tissue formation. However, the basic mechanism(s) which may be involved in this conversion is not clear. This study was designed to evaluate the cells protein secretion activity and examine...
متن کاملEffect of Radiation on self-renewality of prostate cancer stem cells.
Introduction: CSCs have been identified in prostate cancer (PCa), one of the most diagnosed malignancies in men over the world, for which radiation resistance is a major problem in the treatment of advanced stages. Cancer stem cells (CSCs) have the ability to self-renew and differentiate to give rise to heterogeneous phenotype of the tumor cells. It is believed that CSCs are ...
متن کاملEquine Bone Marrow Derived Mesenchymal Stem Cells: Isolation and Multilineage Differentiation
Objective- To evaluate growth characteristics and differentiation capacity of equine mesenchymal stem cell (eMSCs) derived from bone marrow (BM). Study design- In vitro experimental study. Animals- Four young adult horses (2-5 years old) Procedure- Cell morphology and growth characteristics of eMSCs harvested from BM were evaluated in standard culture conditions. eMSCs in passage 3 were subj...
متن کاملIn vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes
Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...
متن کاملEquine marrow-derived mesenchymal stem cells: isolation, differentiation and culture optimization
Most studies regarding the marrow-derived equine mesenchymal stem cells (MSCs) have mainly focusedon the cell transplantation without considering the capacity of differentiation and in vitro requirements of thecells. These concerns were investigated in the present study. Equine MSCs were isolated from the sternalmarrow aspirates and expanded through two successive subcultures. Passage-2 equine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 34 4 شماره
صفحات -
تاریخ انتشار 2014